Google

Web Application Vulnerability Trends in the Wild
aaj@google.com, W3C TPAC 2018

Background

GOOGLE VULNERABILITY REWARD PROGRAM

2017 Year in Review

g = 2 ;

1,230 274 113
INDIVIDUAL PAID RESEARCHERS COUNTRIES
REWARDS REPRESENTED IN BUG
REPORTS
© & ¢
60 $112,500 $160,000+
COUNTRIES BIGGEST DONATED TO
REPRESENTED IN BUG SINGLE REWARD CHARITY

REWARDS

Google Application Security

Home Learning Reward Programs Hall of Fame Research

Google VRP Patch Rewards AutoFuzz Patch Rewards Research Grants Chrome Rewards Android Rewards Google Play Rewards

Category Examples Applications that Other highly Normal Non-integrated acquisitions and
permit taking over a sensitive Google other sandboxed or lower priority
Google account [1] pplications pplications pplications [3]
[2]

Vulnerabilities giving direct access to Google servers

Remote code execution Command injection, $31,337 $31,337 $31,337 $1,337 - $5,000
deserialization bugs,
sandbox escapes

Unrestricted file system or Unsandboxed XXE, SQL $13,337 $13,337 $13,337 $1,337 - $5,000
database access infection

Logic flaw bugs leaking or Direct object reference, $13,337 $7.500 $5,000 $500

bypassing significant remote user

security controls impersonation

Vulnerabilities giving access to client or authenticated session of the logged-in victim

Execute code on the client Web: Cross-site $7,500 $5,000 $3,133.7 $100
scripting
Mobile / Hardware: Code
execution
Other valid security Web: CSRF, Clickjacking $500 - $7,500 $500 - $5,000 $500 - $100
vulnerabilities Mobile / Hardware: $3,133.7

Information leak,
privilege escalation

Ecosystem of web applications at Google

e Server-side code
o 4 major languages: Java, C++, Python, Go
o 16 HTML template system engines
o Dozens of server-side stacks/frameworks
e Client-side code: mostly JS and TypeScript
o A diverse set of frameworks: Angular, Polymer, GWT, Closure
e 619 distinct applications under *.google.com
o 2 billion lines of code total
o Large amount of third-party code, including in external repositories
e Hundreds of acquired companies, often with very different infrastructure

Traditional SDL/hardening approaches have limits => emphasis on the platform.

http://delivery.acm.org/10.1145/2860000/2854146/p78-potvin.pdf

Vulnerabilities

Paid bounties by vulnerability on Mozilla websites in 2016 and 2017

Count of Vulnerability

2] O @ 5 & > X > X >
P R G I O P R A
O S N > X N X S O S & : & ~
o > NS Ch P < e o R > 2 > ¢S O 4% &
& & & Q@QQ o & » ¥ b 52 e°o & & & & &
S (@
¢\9®G e;c’b @Q@ < \@Q’Q & \;&Q) & 5 & é‘z’& ®§° &
S > : ¢
& & & Q,O,(b »{%Q L %Q)O 4&%6
& il & & &
® &
&

Source: @jvehent, Mozilla (legend)

https://twitter.com/jvehent/status/911192609699373056
https://bugzilla-dev.allizom.org/describekeywords.cgi

Paid bounties by vulnerability on Mozilla websites in 2016 and 2017

Count of Vulnerability

Source: @jvehent, Mozilla (legend)

https://twitter.com/jvehent/status/911192609699373056
https://bugzilla-dev.allizom.org/describekeywords.cgi

VULNERABILITIES BY INDUSTRY

MEDIA & FINANCIAL GAMING HEALTHCARE ECOMMERCE TECHNOLOGY TRANSPORTATION TRAVEL & HACKERONE
ENTERTAINMENT &BANKING & RETAIL HOSPITALITY PLATFORM

o —— 1% o N ax

CROSS-SITE

SCRIPTING (XSS) i

IMPROPER
AUTHENTICATION 16%

FORGERY (CSRF)

VIOLATION OF SECURE
DESIGN PRINCIPLES

12% 8% 11% - 11%
- -
(INFORMATION \ i [

DISCLOSURE 7
——

DENIAL OF SERVICE 0% 2% 0% 7% 0% 2%

=
~
£
-
&
~
£

-

4%

===
I |
@ROSS-SITE REQUE 8% - 10% . 5% 12% 11%
=]
(-
I
[l

OPEN REDIRECT 4%

H =
ol
£ #
-
#
w
ES
=
w
#
H N

ERIVILEGE 3% [| 3% 7% 5%] 6% 4% 4% 4%
ESCALATION
MEMORY 0% 0% | 1% 0% 4% 0% 0% 0% 1 1%
CORRUPTION
CRYPTOGRAPHIC
1% 3% % 1% 3% % 2% 0% 2%
ISSUES il | 3 1 3 | |
Ul REDRESSING
(ChicRIRorING 2% i 2% 0% 1% 2% l 2% i 1% 0% | 1%
COMMAND INJECTION 2% | 2% 0% 3% 1% l 2% 0% 2% | 1%
SQL INJECTION 2% | 2% l 3% 6% 0% 0% . 3% 2% l 2%
CODE INJECTION 2% 0% | 1% 3% 0% l 2% l 2% 0% | 1%

Figure 2: P ntage of vuinerability type by industry from 2013 to May 201

Source: HackerOne report, 2017

https://www.hackerone.com/sites/default/files/2017-06/The%20Hacker-Powered%20Security%20Report.pdf

Vulnerabilities by Industry

FINANCIAL SERVICES MEDIA & PROFESSIONAL RETAIL & TRAVEL&
CONSUMER GOODS & INSURANCE GOVERNMENT HEALTHCARE ENTERTAINVENT SERVICES FCOMMERCE TECHNOLOGY TELECOM TRANSPORTATION HOSPITALITY

23% | LA | G 19% B s 27%

INFORMATION
DiscLosure. ¥ 17% | TS | JERtiY 25% B e 14%
———

IMPROPER
AUTHENTICATION
- = ~

(VIOLATION OF SECUR
DESIGN PRINCIPLES
-

7% 8% | 5% 18%] 10%

9% 8% | [RELS 6% 4%

— -

ROSS-SITE REQUEN
FORGERY (CSRF)

7% | | 8% 2% 8%

|

16% P 0% | ERTY 1% | JEEEELY

| |

i

il
a% 1 6% n 8% 5% f 7% 6% 8% | 5% 1 4% 2% 9%
rvece s f ax | m x| s s b om f owm B ows W f
IMPROé’ssRACCESS 12% | 9% | 3% 9% | 6% 7% i 8% 1 6% 1 5% 2% | 4%
O aarHIC 2% | 2% | T 1% | 2% 2% | 1% | 2% | 3% 1% | 1%
g 2% | 2% | 1% 1% | 1% 2% | 1% | 2% | 2% 1% | 1%
s w fow | = W fom w fow) ow) o T
CODE INJECTION 1% | 1% | 1% 5% | 2% 2% | 2% | 2% | 2% 1% | 1%
SQL INJECTION 5% | 1%] 5% 4% | 2% 0% | 2% | 2% | 2% 2% 1%
COMNAND 1% | 1% | 1% 2% | 1% 1% | 1% | 1% | 2% 1% | 1%
o] - - i i | " -

Figure 5: Listed 5 vulnerat pes plat de, and age slnera: ece fu

Source: HackerOne report, 2018

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf

Total Google VRP Rewards (since 2014)

Everything else

Web platform bugs

Google VRP Rewards for Web Platform Bugs

Other

Clickjacking

CSRF

XSS

Main Causes of XSS Vulnerabilities

Code without escaping

Other

Template without escaping

Autoescaping disabled

Insecure URL handling

Other JS primitives

Misuse of innerHTML

Web Platform Vulnerabilities as % of Total

100.00%

75.00% ! \

50.00%

% web / total

25.00% |

0.00%
2013 2014 2015 2016 2017

Year

Summary of Vulnerability Trends

e The maijority of application vulnerabilities are "web platform" issues
exploitable against logged-in application users.

e Main vulnerability classes:
o XSSin its various forms
o CSRF, XSSl / information disclosure, clickjacking / Ul redress.

e Longtail of issues caused by cross-origin leakiness of the platform:
o XS-Search, size leaks, pixel-perfect leaks, window.frame counting

A high-level view of web security

Three major classes of problems:

#1. Lack of transport safety

No confidentiality / integrity of traffic => all bets are off.
Vulnerabilities:

e The use of HTTP, use of non-Secure cookies, mixed scripting/content.
Specs:

e HSTS, Mixed Content, UIR, Secure Contexts, ...

https://tools.ietf.org/html/rfc6797
https://w3c.github.io/webappsec-mixed-content/
https://w3c.github.io/webappsec-upgrade-insecure-requests/
https://w3c.github.io/webappsec-secure-contexts/

#2. Injections

Attacker's scripts running in a vulnerable origin => all bets are off.
Vulnerabilities:

e XSS
Specs:

e CSP3, Trusted Types, [Suborigins], Sanitization

https://www.w3.org/TR/CSP3/
https://github.com/WICG/trusted-types
https://w3c.github.io/webappsec-suborigins/
https://github.com/WICG/purification

#3. Forced loading of endpoints from victim's origin

Broad class of purpose-specific attacks that violate integrity or confidentiality.

e Violating integrity by forcing the inclusion of a resource:
o CSRF, clickjacking

e Violating confidentiality by forcing the inclusion of a resource:
o XSSI, XS-Search & timing attacks, pixel-perfect attacks, ...

Note: This is getting worse as new APIs are added to the web platform.

Specs:

e SameSite cookies, CORB/CORP, Sec-Metadata, COWP, [Isolate-Me]

https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://www.chromium.org/Home/chromium-security/corb-for-developers
https://github.com/whatwg/fetch/issues/687
https://mikewest.github.io/sec-metadata/
https://github.com/whatwg/html/issues/3740
https://wicg.github.io/isolation/explainer.html

Analysis

The (transport, injections, cross-origin leaks) model covers a large majority of the
web platform bugs security engineers see in modern applications.

There are several areas of web platform security that it doesn't cover:

e Containment. HTML sandbox, COWL, script capability restrictions
e Attacks by trusted resources: SRI, Referrer Policy
e Direct attacks on the browser (e.g. history/cache sniffing) or on the user

These classes of issues are still worth spending time on.

Final words

To build security into the web platform we need to give developers mechanisms to
solving the three big problems in their applications:

e Secure transport
e Injections
e Cross-origin leaks

Failing to address these problems will have a large cost for the platform:
developers will either spend a lot of resources on compensating for the
deficiencies of the platform or they'll be forced into a constant state of insecurity.

If these mechanisms work as opt-in, we might be able to turn them on by default.

[end]

Bonus: Isolation features in response to

¥ Spectre @
ajor areasof work to protect against speculative execution attacks:

e How do | limit access to my resources? [summary]
o Any response loaded in no-cors mode can be exfiltrated by evil.com
o Specs: CORB, CORP, Sec-Metadata, SameSite cookies,
e How do | make sure my documents live in their own process? [summary]
o Two sets of converging goals: browsers want to allow process-based
isolation; authors want severing of window references
o Specs: COWP ("level 1") / the old CSP3 "disown-opener' keyword
e How do we restrict the capabilities of documents with dangerous features?
o Ensure that documents with fine-grained timers can't bypass the SOP
o Specs: COWP ("level 2"), X-Bikeshed-Force-Isolate

http://arturjanc.com/cross-origin-infoleaks.pdf
https://www.chromium.org/Home/chromium-security/corb-for-developers
https://github.com/whatwg/fetch/issues/687
https://mikewest.github.io/sec-metadata/
https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://groups.google.com/a/chromium.org/d/msg/isolation-policy/qePHBdsBXoU/GnLtv5dpDQAJ
https://github.com/whatwg/html/issues/3740
https://github.com/w3c/webappsec/issues/139
https://github.com/whatwg/html/issues/3740
https://docs.google.com/document/d/1RuE5Yr0c1spJkSslrjfXyk6ljkj5AV-jAXfeU_pHPRk/edit

