
Web Application Vulnerability Trends in the Wild
aaj@google.com, W3C TPAC 2018

Background

Ecosystem of web applications at Google
● Server-side code

○ 4 major languages: Java, C++, Python, Go
○ 16 HTML template system engines
○ Dozens of server-side stacks/frameworks

● Client-side code: mostly JS and TypeScript
○ A diverse set of frameworks: Angular, Polymer, GWT, Closure

● 619 distinct applications under *.google.com
○ 2 billion lines of code total
○ Large amount of third-party code, including in external repositories

● Hundreds of acquired companies, often with very different infrastructure

Traditional SDL/hardening approaches have limits => emphasis on the platform.

http://delivery.acm.org/10.1145/2860000/2854146/p78-potvin.pdf

Vulnerabilities

Source: @jvehent, Mozilla (legend)

https://twitter.com/jvehent/status/911192609699373056
https://bugzilla-dev.allizom.org/describekeywords.cgi

Source: @jvehent, Mozilla (legend)

https://twitter.com/jvehent/status/911192609699373056
https://bugzilla-dev.allizom.org/describekeywords.cgi

Source: HackerOne report, 2017

https://www.hackerone.com/sites/default/files/2017-06/The%20Hacker-Powered%20Security%20Report.pdf

Source: HackerOne report, 2018

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf

Total Google VRP Rewards (since 2014)

Google VRP Rewards for Web Platform Bugs

Main Causes of XSS Vulnerabilities

Web Platform Vulnerabilities as % of Total

Summary of Vulnerability Trends

● The majority of application vulnerabilities are "web platform" issues
exploitable against logged-in application users.

● Main vulnerability classes:
○ XSS in its various forms
○ CSRF, XSSI / information disclosure, clickjacking / UI redress.

● Long tail of issues caused by cross-origin leakiness of the platform:
○ XS-Search, size leaks, pixel-perfect leaks, window.frame counting

A high-level view of web security

Three major classes of problems:

#1. Lack of transport safety
No confidentiality / integrity of traffic => all bets are off.

Vulnerabilities:

● The use of HTTP, use of non-Secure cookies, mixed scripting/content.

Specs:

● HSTS, Mixed Content, UIR, Secure Contexts, ...

https://tools.ietf.org/html/rfc6797
https://w3c.github.io/webappsec-mixed-content/
https://w3c.github.io/webappsec-upgrade-insecure-requests/
https://w3c.github.io/webappsec-secure-contexts/

#2. Injections
Attacker's scripts running in a vulnerable origin => all bets are off.

Vulnerabilities:

● XSS

Specs:

● CSP3, Trusted Types, [Suborigins], Sanitization

https://www.w3.org/TR/CSP3/
https://github.com/WICG/trusted-types
https://w3c.github.io/webappsec-suborigins/
https://github.com/WICG/purification

#3. Forced loading of endpoints from victim's origin
Broad class of purpose-specific attacks that violate integrity or confidentiality.

● Violating integrity by forcing the inclusion of a resource:
○ CSRF, clickjacking

● Violating confidentiality by forcing the inclusion of a resource:
○ XSSI, XS-Search & timing attacks, pixel-perfect attacks, …

Note: This is getting worse as new APIs are added to the web platform.

Specs:

● SameSite cookies, CORB/CORP, Sec-Metadata, COWP, [Isolate-Me]

https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://www.chromium.org/Home/chromium-security/corb-for-developers
https://github.com/whatwg/fetch/issues/687
https://mikewest.github.io/sec-metadata/
https://github.com/whatwg/html/issues/3740
https://wicg.github.io/isolation/explainer.html

Analysis
The (transport, injections, cross-origin leaks) model covers a large majority of the
web platform bugs security engineers see in modern applications.

There are several areas of web platform security that it doesn't cover:

● Containment: HTML sandbox, COWL, script capability restrictions
● Attacks by trusted resources: SRI, Referrer Policy
● Direct attacks on the browser (e.g. history/cache sniffing) or on the user

These classes of issues are still worth spending time on.

Final words
To build security into the web platform we need to give developers mechanisms to
solving the three big problems in their applications:

● Secure transport
● Injections
● Cross-origin leaks

Failing to address these problems will have a large cost for the platform:
developers will either spend a lot of resources on compensating for the
deficiencies of the platform or they'll be forced into a constant state of insecurity.

If these mechanisms work as opt-in, we might be able to turn them on by default.

[end]

Bonus: Isolation features in response to
👻Spectre👻
Three major areas of work to protect against speculative execution attacks:

● How do I limit access to my resources? [summary]
○ Any response loaded in no-cors mode can be exfiltrated by evil.com
○ Specs: CORB, CORP, Sec-Metadata, SameSite cookies,

● How do I make sure my documents live in their own process? [summary]
○ Two sets of converging goals: browsers want to allow process-based

isolation; authors want severing of window references
○ Specs: COWP ("level 1") / the old CSP3 `disown-opener' keyword

● How do we restrict the capabilities of documents with dangerous features?
○ Ensure that documents with fine-grained timers can't bypass the SOP
○ Specs: COWP ("level 2"), X-Bikeshed-Force-Isolate

http://arturjanc.com/cross-origin-infoleaks.pdf
https://www.chromium.org/Home/chromium-security/corb-for-developers
https://github.com/whatwg/fetch/issues/687
https://mikewest.github.io/sec-metadata/
https://tools.ietf.org/html/draft-west-first-party-cookies-07
https://groups.google.com/a/chromium.org/d/msg/isolation-policy/qePHBdsBXoU/GnLtv5dpDQAJ
https://github.com/whatwg/html/issues/3740
https://github.com/w3c/webappsec/issues/139
https://github.com/whatwg/html/issues/3740
https://docs.google.com/document/d/1RuE5Yr0c1spJkSslrjfXyk6ljkj5AV-jAXfeU_pHPRk/edit

